Global well-posedness for the cubic nonlinear Schrödinger equation with initial data lying in <i>L</i><sup><i>p</i></sup>-based Sobolev spaces

نویسندگان

چکیده

In this paper we continue our study [DSS20] of the nonlinear Schr\"odinger equation (NLS) with bounded initial data which do not vanish at infinity. Local well-posedness on $\mathbb{R}$ was proved for real analytic data. Here prove global 1D NLS lying in $L^{p}$ any $2 < p \infty$, provided is sufficiently smooth. We use complete integrability cubic Schr{\"o}dinger equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data

The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate varian...

متن کامل

Global Well-posedness for Cubic Nls with Nonlinear Damping

u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...

متن کامل

Almost Surely Local Well-posedness of the Cubic Nonlinear Schrödinger Equation below L²(t)

We consider the local well-posedness of the periodic cubic nonlinear Schrödinger equation with initial data below L(T). In particular, we prove that it is locally well-posed almost surely for the initial data in the support of the Gaussian measures on H(T) for each s > − 1 8 .

متن کامل

Global Well - Posedness and Scattering for the Energy - Critical Nonlinear Schrödinger Equation In

We obtain global well-posedness, scattering, and global L10 t,x spacetime bounds for energy-class solutions to the quintic defocusing Schrödinger equation in R1+3, which is energy-critical. In particular, this establishes global existence of classical solutions. Our work extends the results of Bourgain [4] and Grillakis [20], which handled the radial case. The method is similar in spirit to the...

متن کامل

6 Global Well - Posedness and Scattering for the Defocusing Energy - Critical Nonlinear Schrödinger Equation in R

We obtain global well-posedness, scattering, uniform regularity, and global L6t,x spacetime bounds for energy-space solutions to the defocusing energy-critical nonlinear Schrödinger equation in R × R. Our arguments closely follow those in [11], though our derivation of the frequency-localized interaction Morawetz estimate is somewhat simpler. As a consequence, our method yields a better bound o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0042321